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Single-cell transcriptomics of 20 mouse 
organs creates a Tabula Muris
the tabula Muris consortium*

Here we present a compendium of single-cell transcriptomic data from the model organism Mus musculus that comprises 
more than 100,000 cells from 20 organs and tissues. These data represent a new resource for cell biology, reveal gene 
expression in poorly characterized cell populations and enable the direct and controlled comparison of gene expression 
in cell types that are shared between tissues, such as T lymphocytes and endothelial cells from different anatomical 
locations. Two distinct technical approaches were used for most organs: one approach, microfluidic droplet-based 3′-end 
counting, enabled the survey of thousands of cells at relatively low coverage, whereas the other, full-length transcript 
analysis based on fluorescence-activated cell sorting, enabled the characterization of cell types with high sensitivity and 
coverage. The cumulative data provide the foundation for an atlas of transcriptomic cell biology.

The cell is a fundamental unit of structure and function in biology, 
and multicellular organisms have evolved various cell types with spe-
cialized roles. Although cell types have historically been character-
ized by morphology and phenotype, the development of molecular 
methods has enabled increasingly precise descriptions of their prop-
erties, typically by measuring protein or mRNA expression patterns1. 
Technological advances have also expanded measurement multiplex-
ing such that highly parallel sequencing can now enumerate nearly 
every mRNA molecule in a single cell2–8. This approach has provided 
insights into cell biology and organ composition from various organ-
isms9–18. However, although these reports provide valuable character-
ization of individual organs, it is challenging to compare data collected 
from different animals by independent labs with varying experimental 
techniques. It therefore remains unknown whether these data can be 
synthesized as a more general resource for biology.

Here we report a compendium of cell types from the mouse Mus 
musculus; we refer to this as a Tabula Muris, or ‘Mouse Atlas’. We ana-
lysed several organs from the same mouse, generating a dataset con-
trolled for age, environment and epigenetic effects. This enabled the 
direct comparison of cell-type composition between organs, and the 
comparison of shared cell types across organs. The compendium com-
prises single-cell transcriptomic data from 100,605 cells isolated from 
20 organs from three female and four male, C57BL/6JN, three-month-
old mice (10–15 weeks), analogous to 20-year-old humans (Fig. 1a). 
Aorta, bladder, bone marrow, brain (cerebellum, cortex, hippocam-
pus and striatum), diaphragm, fat (brown, gonadal, mesenteric and 
subcutaneous), heart, kidney, large intestine, limb muscle, liver, lung, 
mammary gland, pancreas, skin, spleen, thymus, tongue and trachea  
from the same mouse were immediately processed into single-cell  
suspensions. All organs were single-cell-sorted into plates using  
fluorescence-activated cell sorting (FACS), and many were also loaded 
into microfluidic droplets (see Extended Data and Methods).

All data, protocols, analysis scripts and an interactive data browser 
are publicly available (for details, see ‘Data availability’). This release 
enables the exact replication of all results, facilitates in-depth analyses 
not completed here, and provides a comparative framework for future 
studies using the large variety of murine disease models. Although 
these data are by no means a complete representation of all mouse 
organs and cell types, they provide a first draft attempt to create an 
organism-wide representation of cellular diversity.

Defining organ-specific cell types
To define cell types, we analysed each organ independently by performing  
principal component analysis (PCA) on the most variable genes between 
cells, followed by nearest-neighbour graph-based clustering. We then 
used cluster-specific gene expression of known markers and genes 
that are differentially expressed between clusters to assign cell-type 
annotations to each cluster (Extended Data Figs. 1, 2, Supplementary 
Table 1). We used a standard annotation method for all organs; step-
by-step instructions to reproduce this method are provided in the sup-
plemental Organ Annotation Vignette using the liver as an example. 
Cell type descriptions and defining genes for each organ are available in 
the Supplementary Information. For each cluster, we provide annota-
tions in the controlled vocabulary of the cell ontology19 to facilitate inter- 
experiment comparisons. Many of these cell types have not previously 
been obtained in pure populations, and our data provide a wealth of 
new information on their characteristic gene-expression profiles. Some 
unexpected discoveries include a potential new role for Neurog3, Hhex 
and Prss53 in the adult pancreas, a cell population expressing Chodl in 
limb muscle, transcriptional heterogeneity of brain endothelial cells, the 
expression of MHC class II genes by adult mouse T cells, and sets of 
transcription factors that distinguish cell types across organs.

Methodological comparison
We performed single-cell RNA-sequencing with two methods: FACS-
based cell capture in plates and microfluidic-droplet-based capture 
(hereafter denoted the FACS method and the microfluidic-droplet 
method, respectively). To understand the technical biases of each 
approach, we performed both methods on many organs. Overall, 
44,949 cells from the FACS method and 55,656 cells from the micro-
fluidic-droplet method were retained after quality control. Single-cell 
transcriptomes were sequenced to an average depth of 814,488 reads 
per cell (FACS) and 7,709 unique molecular identifiers (UMIs) per 
cell (microfluidic droplet). Comparing methods shows organ-specific 
differences in the number of cells analysed (Fig. 1b, c), reads per cell 
(Extended Data Fig. 3a, c) and genes per cell (Extended Data Fig. 3b, d). 
Furthermore, with both methods the most abundant cell types analysed 
were epithelial cells and leukocytes, although FACS captured a larger 
diversity of cell types (Extended Data Fig. 4).

Any individual single-cell sequencing experiment offers only a partial  
view of cell-type diversity within an organism and gene expression 
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within each cell type. We illustrate the expected variability between 
methods and experiments by comparing our two measurement 
approaches to a third method, microwell-seq20. One notable feature is 
the variability in the number of genes detected per cell between organs 
and methods. For example, the median number of genes detected in 
the bladder is around 4,900 (FACS), 2,900 (microfluidic droplet) and 
900 (microwell-seq), whereas in the kidney it is around 1,400 (FACS), 
1,900 (microfluidic droplet) and 500 (microwell-seq). In the bladder, 
liver, lung, mammary gland, trachea, tongue and spleen, nearly twice 
as many genes are detected per cell with the FACS method compared 
to the microfluidic-droplet method, whereas the heart and marrow 
show comparable numbers between the two methods (Extended Data 
Fig. 5a). This difference is probably not due to sequencing depth, as 
both FACS and microfluidic-droplet libraries are nearly saturated 
(Extended Data Fig. 5b). In these comparisons, a gene is considered 
detected if a single read maps to it, as that is the only value at which 
reads and UMIs can be treated equally. We also found that the number 
of detected genes decreases similarly across organs as the read or UMI 
threshold for a detectable gene is increased (Extended Data Fig. 6).

Next, we investigated whether the three methods agree on the 
genes defining each cell cluster (Methods). As expected, the FACS and  
microfluidic-droplet methods show the closest agreement, probably 
because they used the same biological samples. However, there are 
several dozen to several hundred genes common to all methods that 
define each cluster (Extended Data Fig. 7, Supplementary Table 2). This 
suggests that combining independent datasets can lead to more robust 
characterizations of gene expression.

Spleen and kidney are two organs for which FACS was performed 
without marker-based sorting, which enables us to compare the num-
ber and relative abundance of different cell types between methods. For 
those cell types that are captured by both methods, the proportion of 
each cell type is equivalent (Pearson correlation coefficient: spleen, 0.99; 
kidney, 0.99). Nonetheless, the microfluidic-droplet method identified 
cell types that were missed by the FACS method in both organs, for 
example kidney mesangial cells, and splenic dendritic and natural killer 
cells. This is partially explained by cellular abundance and sampling 
depth (12,333 microfluidic-droplet cells compared with 2,216 FACS 
cells, Supplementary Table 1), and possibly from cell capture and lysis 
biases between methods.

As the FACS method captures fewer cells but detects more mole-
cules per cell than the microfluidic-droplet method, we asked whether 
the two methods agree in their ‘bulk’ gene-expression profiles for the 
33 shared cell populations (Methods). Such gene-expression profiles 
largely correlate (Pearson correlation coefficient: 0.74–0.90), which 
suggests that although biases between methods exist, both accurately 
recapitulate average cell-type gene-expression profiles.

Global clustering across organs
To detect relationships between cells from different organs, we vis-
ualized all FACS cells with t-SNE and grouped them with unbiased, 
graph-based clustering (Fig. 2, Extended Data Fig. 8). As expected, cells 
from different organs often mixed, with 25 of 54 clusters containing 
(at least five) cells from distinct organs (Fig. 3). For example, clusters 
3 and 48 each contain endothelial cells from five or more organs, and 
clusters 1 and 24 contain mesenchymal and stromal cells from four or 
more organs. Cluster 2 contains B cells from fat, limb muscle, lung, 
spleen, marrow and liver, but also cells annotated as leukocytes and 
lymphocytes from the thymus, heart and limb muscle. This suggests 
that the effect of cell type on measured gene expression is stronger than 
the effect of batch or dissociation protocol.

Cluster co-membership alone, however, is insufficient to conclude 
that two cell populations from different organs represent the same 
or similar cell types; at any given resolution, unbiased clustering that 
groups related cells may also group unrelated cells21. Therefore, to 
determine which clusters are composed of related or unrelated cell 
types, we computed a heterogeneity score for each cluster (Methods), 
and found low scores for the biologically sensible clusters discussed 
above (Extended Data Fig. 9). By contrast, the astrocytes and epithelial 
cells in cluster 53 are as different from one another as two random cells.

In addition to these heterogeneous groups, the clustering reveals 
small populations of potentially mislabelled cells inside homogenous 
populations. For example, ten thymus cells in cluster 3 (composed 
of 2,379 cells) are annotated as ‘leukocytes’, but they express Pecam1, 
which is an endothelial marker. This is a predictable artefact of the 
annotation scheme: because entire clusters, rather than individual 
cells, were annotated in each organ, a sufficiently rare cell type that was  
algorithmically grouped with a more populous cell type will be mis-
annotated. This seems to occur only for populations smaller than about 
30 cells, which comprise less than 4% of the overall dataset, and represents 
the lower limit of sensitivity in the current release of data interpretation.

The fact that most cells of similar cell types cluster together across 
organs and biological replicates shows that batch effects are not the 
main source of variance in the dataset. Our findings also show that 
manual annotation of cell types is consistent with unbiased transcrip-
tomic clustering for sufficiently large populations. We expect that fur-
ther development of multi-scale comparison algorithms will facilitate 
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Fig. 1 | Overview of Tabula Muris. a, 20 organs from four male and three 
female mice were analysed. After dissociation, cells were sorted by FACS 
and, for some organs, captured in microfluidic oil droplets. Cells were 
lysed, transcriptomes amplified and sequenced, reads mapped, and data 
analysed. b, Bar plot showing the number of sequenced cells prepared 
by FACS from each organ (n = 20 organ types). c, Bar plot showing the 
number of sequenced cells prepared by microfluidic droplets from each 
organ (n = 12 organ types).
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the discovery of both universal and organ-specific gene modules within 
these shared cell types.

To demonstrate an example of investigating common cell types 
across organs, we collectively analysed all FACS cells annotated as  
T cells, which revealed five clusters (Fig. 4). Cluster 0 comprises thymic 
cells undergoing VDJ recombination characterized by the expression 
of Rag1, Rag2 and Dntt, and includes uncommitted double-positive  
T cells (Cd4+ and Cd8a+). Cluster 4 contains predominantly prolif-
erating thymic T cells, which may represent pre-T cells expanding 
after VDJ recombination. Clusters 1–3 contain mostly single-positive 
T cells (Cd4+ or Cd8a+). Cluster 3 contains Cd5hi thymic T cells that 
are possibly undergoing positive selection, whereas Cluster 2 contains 
mostly non-thymic T cells expressing the high-affinity IL2 receptor 
(encoded by the genes Il2ra and Il2rb), which suggests that they are 
activated. Notably, they also express MHC class II genes (H2-Aa and 
H2-Ab1). Although this is known in human T cells, MHC class II was 
previously thought to be restricted to professional antigen-presenting 
cells in mice22. Finally, Cluster 1 also represents mature T cells, but 
primarily splenic.

Global transcription factor analysis
One major goal of defining cell identities is to understand the under-
lying regulatory networks. We investigated how transcription factors 
contribute to cell-type identity by clustering averaged gene-expression 
profiles for each cell type using only the 1,016 transcription factors 
expressed in our dataset (Fig. 5a). The resulting dendrogram closely 
resembles the dendrogram produced using all expressed genes, indicat-
ing that transcription factors can be used to reconstruct known cell- 
ontology relationships between bulk populations (entanglement = 0.11; 
Extended Data Fig. 10a). By contrast, when we repeated the analysis 
using cell-surface markers, RNA splicing factors, or the two groups 

combined (equivalent to a random set of genes), the entanglement 
was 0.22, 0.25 and 0.34, respectively, which suggests that none of 
these molecular classes define cell type to the extent that transcription  
factors do.

We then analysed organ-specific transcription factors by performing 
correlation analysis on shared cell types between organs23 (epithelial 
cells, endothelial cells, B cells and T cells; Fig. 5b–e, Extended Data 
Fig. 10b–i). To understand which transcription factors were most 
informative for specifying cell types, we performed variable selec-
tion using random forest models (Methods) and determined that 136 
transcription factors are needed to simultaneously define all cell types 
across all organs (Fig. 5f, Supplementary Table 3). We then determined 
the transcription factor sets that distinguish each individual cell type 
from all other cells. These sets vary substantially in size (from 2 to 813 
transcription factors) and are not necessarily unique to each cell type 
(Fig. 5g–i, Supplementary Table 4).

A possible application for such transcription factor networks is the 
design of reprogramming protocols. Indeed, the transcription factors 
used in published methods are found in the cell-type-specific transcrip-
tion factors sets we discovered (Supplementary Table 5). For some cell 
types, such as hepatocytes, satellite cells and oligodendrocytes, those 
reprogramming factors are the top variables segregating cell types 
(Fig. 5g–i). In fact, for nearly all reprogramming protocols the tran-
scription factors used also specified the targeted cell type in our data 
(Supplementary Table 5), which suggests that our data can inform novel 
reprogramming schemes.

Discussion
A key challenge for single-cell studies is to understand transcriptomic 
changes caused by dissociation. A previous study showed that quiescent 
limb-muscle satellite cells activate upon dissociation and consequently 
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express immediate early genes and other dissociation-related markers24.  
We clearly observed these markers in several organs including limb 
muscle (Extended Data Fig. 11), but many showed little evidence of 
cellular activation. Therefore, the dissociation-related satellite-cell 
markers are not universal, and organs probably display unique disso-
ciation-related expression profiles. Importantly, the presence of such 
changes in gene expression does not prevent the identification of cell 
type or the comparison of cell types across organs.

Another challenge for single-cell studies is experimental design 
amid the choice of several technologies. Droplet-based technologies 
offer certain advantages in the discovery of rare cell types or states, for 

example when many cells (tens of thousands) are required to recon-
struct whole-organism architecture and developmental lineages25,26. 
FACS-based methods generate high coverage over small cellular  
populations (tens to thousands), and are beneficial for enriching  
specific or rare cell types, and for studying subtle heterogeneity 
involving lowly expressed genes27, alternative splicing15 and sequence  
variation analysis28. There are opportunities to combine the two  
methods, such as by running sorted cells on a microfluidic-droplet plat-
form, which could potentially accommodate both cell-type enrichment  
and cost factors.

Recently, a complementary scRNA-seq study across mouse organs 
was published20. Those data contained four times as many cells and 
included several sample types not present in our data, such as neonatal 
and fetal organs, cell lines, and young adult ovary, peripheral blood, 
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placenta, prostate, small intestine, stomach, testis and uterus. However, 
our FACS data contain four times as many genes per cell, and we ana-
lysed several organs not present in the other dataset20, such as aorta, 
four brain regions, diaphragm, four fat types, four adult heart cham-
bers, adult telogen and anagen skin, tongue and trachea. Additionally, 
several features of our study facilitate replication and cross-experiment 
analysis: all data, analysis and code are freely available; our web por-
tal enables one to query gene expression in all organs simultaneously; 
we annotated cell types using standard cell ontology terms, thereby 
enabling cross-organ and cross-experiment analyses; age and sex are 
controlled in our data by collecting all organs from the same mice; both 

sexes are represented for all organs in our data; organs were perfused, 
enabling the analysis of tissue-resident immune cells; and full-length 
transcript data make possible transcription factor, splice variant, and 
sequence variant analyses.

In conclusion, we have created a compendium of single-cell tran-
scriptional measurements across 20 mouse organs. This Tabula Muris, 
or ‘Mouse Atlas’, has many uses, including the discovery of new putative 
cell types, the discovery of novel gene expression in known cell types, 
and the ability to compare cell types across organs. It will also serve 
as a reference of healthy young adult organs, which can be used as a 
baseline for current and future mouse models of disease. Although 

Fig. 5 | Transcription factor analysis. a, Dendrogram of cell types 
constructed with only transcription factors. b–e, Correlograms of top organ-
specific transcription factors for epithelial cells (b), endothelial cells (c),  
B cells (d) and T cells (e). Row colours correspond to the organ of the 
most-enriched cell type; n = 60 randomly selected cells for each cell type. 

f, Top 20 transcription factors (mean Gini importance) of the random-
forest model when classifying all cell types. g–i, Top 10 transcription 
factors (mean Gini importance) of the random-forest model when 
classifying each cell type individually. The coloured genes correspond to 
transcription factors used in successful reprogramming protocols.
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it is not an exhaustive characterization of all mouse organs, it does 
provide a rich dataset of the most highly studied organs in biology.  
The Tabula Muris provides a framework and description of many of the 
most populous and important cell populations within the mouse, and 
represents a foundation for future studies across a multitude of diverse 
physiological disciplines.
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METhodS
Mice and organ collection. Four 10–15 week old male and four virgin female 
C57BL/6JN mice were shipped from the National Institute on Aging colony at 
Charles River (housed at 67–73 °F) to the Veterinary Medical Unit (VMU; housed 
at 68–76 °F)) at the VA Palo Alto (VA). At both locations, mice were housed on a 
12-h light/dark cycle, and provided food and water ad libitum. The diet at Charles 
River was NIH-31, and Teklad 2918 at the VA VMU. Littermates were not recorded 
or tracked, and mice were housed at the VA VMU for no longer than 2 weeks before 
euthanasia. Before tissue collection, mice were placed in sterile collection chambers 
at 8 am for 15 min to collect fresh fecal pellets. After anaesthetization with 2.5% v/v 
Avertin, mice were weighed, shaved, and blood was drawn via cardiac puncture 
before transcardial perfusion with 20 ml PBS. Mesenteric adipose tissue was then 
immediately collected to avoid exposure to the liver and pancreas perfusate, which 
negatively affects cell sorting. Isolating viable single cells from both the pancreas 
and the liver of the same mouse was not possible; therefore, two males and two 
females were used for each. Whole organs were then dissected in the following 
order: large intestine, spleen, thymus, trachea, tongue, brain, heart, lung, kidney, 
gonadal adipose tissue, bladder, diaphragm, limb muscle (tibialis anterior), skin 
(dorsal), subcutaneous adipose tissue (inguinal pad), mammary glands (fat pads 2, 
3 and 4), brown adipose tissue (interscapular pad), aorta and bone marrow (spine 
and limb bones). Organ collection concluded by 10 am. After single-cell dissocia-
tion as described below, cell suspensions were either used for FACS of individual 
cells into 384-well plates, or for preparation of the microfluidic droplet library. 
All animal care and procedures were carried out in accordance with institutional 
guidelines approved by the VA Palo Alto Committee on Animal Research.
Tissue dissociation and sample preparation. Specific protocols for each tissue 
are described in the Supplementary Information.
Sample size, randomization and blinding. No sample size choice was performed 
before the study. Randomization and blinding were not performed: the authors 
were aware of all data and metadata-related variables during the entire course of 
the study.
Single-cell methods. Lysis plate preparation. Lysis plates were created by dis-
pensing 0.4 μl lysis buffer (0.5 U Recombinant RNase Inhibitor (Takara Bio, 
2313B), 0.0625% TritonTM X-100 (Sigma, 93443-100ML), 3.125 mM dNTP mix 
(Thermo Fisher, R0193), 3.125 μM Oligo-dT30VN (Integrated DNA Technologies, 
5′AAGCAGTGGTATCAACGCAGAGTACT30VN-3′) and 1:600,000 ERCC RNA 
spike-in mix (Thermo Fisher, 4456740)) into 384-well hard-shell PCR plates (Bio-
Rad HSP3901) using a Tempest liquid handler (Formulatrix). 96-well lysis plates 
were also prepared with 4 μl lysis buffer. All plates were sealed with AlumaSeal CS 
Films (Sigma-Aldrich Z722634) and spun down (3,220g, 1 min) and snap-frozen 
on dry ice. Plates were stored at −80 °C until sorting.
FACS. After dissociation, single cells from each organ and tissue were isolated 
into 384- or 96-well plates via FACS. Most organs were sorted into 384-well plates 
using SH800S (Sony) sorters. Heart and liver were sorted into 96-well plates and 
cardiomyocytes were hand-picked into 96-well plates. Limb muscle and dia-
phragm were sorted into 384-well plates on an Aria III (Becton Dickinson) sorter. 
The last two columns of each 384 well plate were intentionally left as blanks. For 
most organs, single cells were selected with forward scatter, and dead cells and  
common cell types were excluded with a single colour channel. Combinations of 
fluorescent antibodies were used for most organs to enrich for rare cell popula-
tions (see Supplementary Information), but some were stained only for viable cells. 
Colour compensation was used whenever necessary. On the SH800, the highest 
purity setting (‘Single cell’) was used for all but the rarest cell types, for which the 
‘Ultrapure’ setting was used. Sorters were calibrated using FACS buffer every day 
before collecting any cells, and also after every eight sorted plates. For a typical sort, 
1–3 ml of pre-stained cell suspension was filtered, vortexed gently, and loaded onto 
the FACS machine. A small number of cells were flowed at low pressure to check 
cell and debris concentrations. The pressure was then adjusted, flow paused, the 
first destination plate unsealed and loaded, and sorting started. If a cell suspension 
was too concentrated, it was diluted using FACS buffer or 1X PBS. For some cell 
types, such as hepatocytes, 96-well plates were used because it was not possible 
to sort individual cells accurately into 384-well plates. Immediately after sorting, 
plates were sealed with a pre-labelled aluminium seal, centrifuged, and flash frozen 
on dry ice. On average, each 384-well plate took 8 min to sort.
cDNA synthesis and library preparation. cDNA synthesis was performed 
using the Smart-seq2 protocol7,8. In brief, 384-well plates containing single- 
cell lysates were thawed on ice followed by first-strand synthesis. 0.6 μl of 
reaction mix (16.7 U μl−1 SMARTScribe Reverse Transcriptase (Takara Bio, 
639538), 1.67 U μl−1 Recombinant RNase Inhibitor (Takara Bio, 2313B), 
1.67X First-Strand Buffer (Takara Bio, 639538), 1.67 μM TSO (Exiqon, 
5′-AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG-3′), 8.33 mM dithioth-
reitol (Bioworld, 40420001-1), 1.67 M Betaine (Sigma, B0300-5VL) and 10 mM 
MgCl2 (Sigma, M1028-10X1ML)) was added to each well using a Tempest liquid 
handler. Reverse transcription was carried out by incubating wells on a ProFlex  

2 × 384 thermal-cycler (Thermo Fisher) at 42 °C for 90 min, and stopped by 
heating at 70 °C for 5 min.

Subsequently, 1.5 μl of PCR mix (1.67X KAPA HiFi HotStart ReadyMix  
(Kapa Biosystems, KK2602), 0.17 μM IS PCR primer (IDT, 5′-AAGCAGTGGTAT 
CAACGCAGAGT-3′), and 0.038 U μl−1 Lambda Exonuclease (NEB, M0262L)) 
was added to each well with a Mantis liquid handler (Formulatrix), and second- 
strand synthesis was performed on a ProFlex 2x384 thermal-cycler  
by using the following program: 1) 37 °C for 30 min, 2) 95 °C for 3 min, 3)  
23 cycles of 98 °C for 20 s, 67 °C for 15 s and 72 °C for 4 min, and 4) 72 °C for 5 min.

The amplified product was diluted with a ratio of 1 part cDNA to 10 parts 
10 mM Tris-HCl (Thermo Fisher, 15568025), and concentrations were measured 
with a dye-fluorescence assay (Quant-iT dsDNA High Sensitivity kit; Thermo 
Fisher, Q33120) on a SpectraMax i3x microplate reader (Molecular Devices). 
Sample plates were selected for downstream processing if the mean concentra-
tion of blanks (ERCC-containing, non-cell wells) was greater than 0 ng μl−1, and, 
after linear regression of the values obtained from the Quant-iT dsDNA standard 
curve, the R2 value was greater than 0.98. Sample wells were then selected if their 
cDNA concentrations were at least one standard deviation greater than the mean 
concentration of the blanks. These wells were reformatted to a new 384-well plate 
at a concentration of 0.3 ng μl−1 and a final volume of 0.4 μl using an Echo 550 
acoustic liquid dispenser (Labcyte).

Illumina sequencing libraries were prepared as described previously14. In brief, 
tagmentation was carried out on double-stranded cDNA using the Nextera XT 
Library Sample Preparation kit (Illumina, FC-131-1096). Each well was mixed 
with 0.8 μl Nextera tagmentation DNA buffer (Illumina) and 0.4 μl Tn5 enzyme 
(Illumina), then incubated at 55 °C for 10 min. The reaction was stopped by adding 
0.4 μl Neutralize Tagment Buffer (Illumina) and centrifuging at room temperature 
at 3,220g for 5 min. Indexing PCR reactions were performed by adding 0.4 μl of  
5 μM i5 indexing primer, 0.4 μl of 5 μM i7 indexing primer, and 1.2 μl of Nextera 
NPM mix (Illumina). PCR amplification was carried out on a ProFlex 2x384 thermal  
cycler using the following program: 1) 72 °C for 3 min, 2) 95 °C for 30 s, 3) 12 cycles  
of 95 °C for 10 s, 55 °C for 30 s and 72 °C for 1 min, and 4) 72 °C for 5 min.
Library pooling, quality control and sequencing. After library preparation, 
wells of each library plate were pooled using a Mosquito liquid handler (TTP 
Labtech). Pooling was followed by two purifications using 0.7x AMPure beads 
(Fisher, A63881). Library quality was assessed using capillary electrophoresis 
on a Fragment Analyzer (AATI), and libraries were quantified by qPCR (Kapa 
Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System 
(Biorad). Plate pools were normalized to 2 nM and equal volumes from 10 or  
20 plates were mixed together to make the sequencing sample pool. A PhiX control 
library was spiked in at 0.2% before sequencing.
Sequencing libraries from 384-well and 96-well plates. Libraries were sequenced on 
the NovaSeq 6000 Sequencing System (Illumina) using 2 × 100-bp paired-end 
reads and 2 × 8-bp or 2 × 12-bp index reads with either a 200- or 300-cycle kit 
(Illumina, 20012861 or 20012860).
Microfluidic droplet single-cell analysis. Single cells were captured in droplet emul-
sions using the GemCode Single-Cell Instrument (10x Genomics), and scRNA-seq 
libraries were constructed as per the 10x Genomics protocol using GemCode 
Single-Cell 3′ Gel Bead and Library V2 Kit. In brief, single cell suspensions were 
examined using an inverted microscope, and if sample quality was deemed satis-
factory, the sample was diluted in PBS with 2% FBS to a concentration of 1000 cells 
per μl. If cell suspensions contained cell aggregates or debris, two additional washes 
in PBS with 2% FBS at 300g for 5 min at 4 °C were performed. Cell concentration 
was measured either with a Moxi GO II (Orflo Technologies) or a haemocytometer. 
Cells were loaded in each channel with a target output of 5,000 cells per sample. All 
reactions were performed in the Biorad C1000 Touch Thermal cycler with 96-Deep 
Well Reaction Module. 12 cycles were used for cDNA amplification and sample 
index PCR. Amplified cDNA and final libraries were evaluated on a Fragment 
Analyzer using a High Sensitivity NGS Analysis Kit (Advanced Analytical). The 
average fragment length of 10x cDNA libraries was quantitated on a Fragment 
Analyzer (AATI), and by qPCR with the Kapa Library Quantification kit for 
Illumina. Each library was diluted to 2 nM, and equal volumes of 16 libraries were 
pooled for each NovaSeq sequencing run. Pools were sequenced with 100 cycle  
run kits with 26 bases for Read 1, 8 bases for Index 1, and 90 bases for Read 2 
(Illumina 20012862). A PhiX control library was spiked in at 0.2 to 1%. Libraries 
were sequenced on the NovaSeq 6000 Sequencing System (Illumina).
Data processing. Sequences from the NovaSeq were de-multiplexed using bcl-
2fastq version 2.19.0.316. Reads were aligned using to the mm10plus genome 
using STAR version 2.5.2b with parameters TK. Gene counts were produced using 
HTSEQ version 0.6.1p1 with default parameters, except ‘stranded’ was set to ‘false’, 
and ‘mode’ was set to ‘intersection-nonempty’.

Sequences from the microfluidic droplet platform were de-multiplexed and 
aligned using CellRanger version 2.0.1, available from 10x Genomics with default 
parameters.

© 2018 Springer Nature Limited. All rights reserved.
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Clustering. Standard procedures for filtering, variable gene selection, dimension-
ality reduction and clustering were performed using the Seurat package version 
2.2.1. A detailed worked example, including the mathematical formulae for each 
operation, is in the Organ Annotation Vignette. The parameters that were tuned 
on a per-tissue basis (resolution and number of principal components (PCs)) can 
be viewed in the tissue-specific Rmd files available on GitHub. For each tissue and 
each sequencing method (FACS and microfluidic droplet), the following steps 
were performed:

1. Cells were lexicographically sorted by cell ID to ensure reproducibility.
2. Cells with fewer than 500 detected genes were excluded. (A gene counts as 

detected if it has at least one read mapping to it). Cells with fewer than 50,000 reads 
(FACS) or 1,000 UMI (microfluidic droplet) were excluded.

3. Counts were log-normalized for each cell using the natural logarithm of 1 + 
counts per million (for FACS) or 1 + counts per ten thousand (for microfluidic droplet).

4. Variable genes were selected using a threshold (0.5) for the standardized log 
dispersion, in which the standardization was performed separately according to 
binned values of log mean expression.

5. The variable genes were projected onto a low-dimensional subspace using 
principal component analysis. The number of principal components was selected 
on the basis of inspection of the plot of variance explained.

6. A shared-nearest-neighbours graph was constructed on the basis of the 
Euclidean distance in the low-dimensional subspace spanned by the top principal  
components. Cells were clustered using a variant of the Louvain method that 
includes a resolution parameter in the modularity function13.

7. Cells were visualized using a 2-dimensional t-distributed Stochastic 
Neighbour Embedding of the PC-projected data.

8. Cell types were assigned to each cluster using the abundance of known marker 
genes. Plots showing the expression of the markers for each tissue appear in the 
Extended Data.

9. When clusters appeared to be mixtures of cell types, they were refined either 
by increasing the resolution parameter for clustering or subsetting the data and 
rerunning steps 3–7.

A similar analysis was done globally for all FACS-processed cells and for all 
microfluidic-droplet-processed cells to produce an unbiased clustering.
Heterogeneity score. Let C be a cluster, decomposed into annotated cell types 

∪ ∪= �C T Tk1 . For each pair of cell types Ti,Tj, we compute the average distance 
between their members: ∣ ∣

∣ ∣ ∣ ∣
= ∑ −∈ ∈d x yij T T x T y T

1
,i j i j

. The heterogeneity score 
C is the maximum of those distances over cell types T with at least five cells. For 
the FACS data, the vector x for a cell is the PC-projection from step 5 above. 
Extended Data Fig. 9 contains heat maps of the cell-type distance matrix dij for 
select clusters and a bar plot of the heterogeneity scores for all clusters containing 
several cell types.
Differential expression overlap analysis. For FACS and microfluidic droplet data, 
differential expression analysis for each organ was performed using a Wilcoxon 
rank-sum test as implemented in the ‘FindAllMarkers’ function of the Seurat 
package. Differential expression was performed between cell ontology groups 
and resulted in a list of differentially expressed genes (ln(FoldChange) >0.25) 
between each cell ontology group and all other ontology groups of the same organ. 
For microwell-seq we used the corresponding published lists for each cell type 
and for every organ. We then assessed the overlap of those lists between the three 
methods. As the nomenclature is not identical, the analysis was performed between 
cell types that could be matched with a certain degree of confidence between the 
three methods (Supplementary Table 2).
Correlating bulk gene expression profiles. For the 33 cell populations shared 
between FACS and microfluidic droplets, the average gene-expression profile of 
each population was calculated. The quality of such a bulk gene-expression profile 
depends on the total number of detected molecules. FACS detects more molecules 
per cell, but fewer cells. Microfluidic droplets detect fewer molecules per cell, but 
more cells. To assess the agreement between methods on annotated cell types, 
Pearson correlation was used on the log expression profiles of each shared cell 
population. (Only genes present at 1 count per million or greater in at least one 

of the datasets were considered. A pseudocount of 1 count per million was added 
before taking logarithms.)
Calculation of dissociation scores. For each organ, principal component analysis 
was performed on a subset of 140 dissociation-related genes23. The first principal 
component was used as the ‘dissociation score’ as it corresponds to the variance 
within these genes.
Defining cell type-enriched transcription factors. Transcription factors were 
defined as the 1,140 genes annotated by the Gene Ontology term ‘DNA binding 
transcription factor activity’, downloaded from the Mouse Genome Informatics 
database (http://www.informatics.jax.org/mgihome/GO/project.shtml, accessed 
on 10 November 2017. Cell types were defined as unique combinations of cell 
ontology and organ annotation (for example, Lung_Endothelial_cell). All anal-
yses were performed on the full dataset, except the correlograms for which the 
data was subsampled by randomly selecting 60 cells from each cell type. Enriched 
transcription factors were defined by the Seurat FindMarkers function with the 
Wilcoxon significance test for the target cell type against the all of the rest of the 
cell types combined. These were filtered by p_val < 10−3, avg_diff > 0.2, pct.1 
− pct.2 > 0.1 (per cent detected difference > 0.1), and pct.1 > 0.3 (detected in 
>30% of target cells).
Cell-type comparisons between methods using cell ontology classes. We used 
the OntologyX R package family version 2.4 (libraries ontologyIndex, ontology-
Plot, and ontologySimilarity) to draw the representative cell ontology dendro-
grams (function onto_plot). To compute the tanglegram (function tanglegram 
from dendextend R package version 1.8) we used the dendrogram created from 
all expressed genes as the reference for comparisons to the dendrograms produced 
using particular gene ontology cellular functions (transcription factors, cell surface 
markers, RNA splicing factors). The entanglement scores were calculated using the 
step2side method (function untangle from dendextend R package). Entanglement 
is a measure of alignment between two dendrograms. The entanglement score 
ranges from 0 (exact alignment) to 1 (no alignment)29.
Defining transcription factor networks with random forests. We used ran-
dom forests (a classifier that combines many single decision trees) to calculate 
the importance of each gene for defining cell types30. The varSelRF R package 
version 0.7–8 uses the out-of-bag error as the minimization criterion and carries 
out variable elimination with random forests by successively eliminating the least 
important variables (with importance as returned from the random forest analysis). 
The algorithm iteratively fits random forests, at each iteration building a new forest 
after discarding those variables (genes) with the smallest variable importance; the 
selected set of genes is the one that yields the smallest out-of-bag error rate. This 
leads to the selection of small sets of non-redundant variables.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. All code used for analysis is available on GitHub (https://github.
com/czbiohub/tabula-muris).

Data availability
All data, protocols and analysis scripts from the Tabula Muris are shared as a public 
resource (http://tabula-muris.ds.czbiohub.org/). Gene counts and metadata for 
FACS (https://doi.org/10.6084/m9.figshare.5829687.v7) and microfluidic droplets 
(https://doi.org/10.6084/m9.figshare.5968960.v2) from all single cells along with 
all produced R objects (https://doi.org/10.6084/m9.figshare.5821263.v1), as well 
as FACS Index data (https://doi.org/10.6084/m9.figshare.5975392) are accessi-
ble on Figshare (https://figshare.com/projects/Tabula_Muris_Transcriptomic_ 
characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_
resolution/27733), and raw data are available from the Gene Expression Omnibus 
(GSE109774).
 
 29. Kassambara, A. Practical guide to cluster analysis in R: unsupervised machine 

learning 1st edn (CreateSpace, North Charleston, 2017).
 30. Díaz-Uriarte, R. & Alvarez de Andrés, S. Gene selection and classification of 

microarray data using random forest. BMC Bioinformatics 7, 3 (2006).
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Extended Data Fig. 1 | The number and type of FACS cells that compose 
each organ. a, Cells for each organ visualized with t-SNE, coloured by cell 
type. Cell types were determined by differential gene expression of known 

markers between clusters. b, Bar plots quantifying the number of each 
annotated cell type. Cell type colours match their respective t-SNE plot.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 2 | The number and type of microfluidic cells 
that compose each organ. a, t-SNE plot of all cells collected by the 
microfluidic-droplet method, coloured by organ, overlaid with the 
predominant cell type that composes each cluster. b, Cells for each organ 

visualized with t-SNE, coloured by cell type. Cell types were determined 
by differential gene expression of known markers between clusters. c, Bar 
plots quantifying the number of each annotated cell type. Cell type colours 
match their respective t-SNE plot.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 3 | The number of reads, UMIs and genes detected 
per cell for each organ. a, c, Histograms for each organ of the number of 
reads per cell (FACS) (a) and UMIs per cell (microfluidic droplet) (c).  

b, d, Histogram of the number of genes detected per cell for each organ 
from the FACS method (b), and the microfluidic-droplet method (d).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 4 | Graphical representation of cell ontology class representation. a, b, Datasets from the FACS method (a) and the microfluidic-
droplet method (b), coloured by the relative amount of each cell type in each dataset.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 5 | Methodological comparison of detected genes 
and library saturation. a, The number of genes detected (threshold of 
>0 reads or UMIs per cell) by FACS (red; n = 21,105 individual cells), 
microfluidic-droplet (green; n = 55,032 individual cells) and microwell-
seq (blue; n = 25,891 individual cells) methods20. b, Library saturation 

fraction for all microfluidic-droplet libraries. Dotted horizontal line 
demarcates the median saturation (around 0.9). c, Library saturation for 
all FACS libraries. Saturation was calculated using the number of detected 
genes while downsampling the number of reads per library. Summary 
statistics are contained in Supplementary Table 6.

© 2018 Springer Nature Limited. All rights reserved.



Article reSeArcH

Bladder

Brain

Kidney

Limb Muscle

Liver

Lung

Mammary Gland

Marrow

Pancreas

Spleen

Thymus

0.00 0.25 0.50 0.75 1.00

Fraction of detected genes present above threshold

O
rg

an

UMI.threshold
1
2
3
4

Microwell

Bladder

Brain Myeloid

Brain Non−Myeloid

Fat

Heart

Kidney

Large Intestine

Limb Muscle

Liver

Lung

Mammary Gland

Marrow

Pancreas

Skin

Spleen

Thymus

Tongue

Trachea

0.00 0.25 0.50 0.75 1.00

Fraction of detected genes present above threshold

O
rg

an

Read.threshold
10
20
30
40

FACS

Bladder

Heart and Aorta

Kidney

Limb Muscle

Liver

Lung

Mammary Gland

Marrow

Spleen

Thymus

Tongue

Trachea

0.00 0.25 0.50 0.75 1.00

Fraction of detected genes present above threshold

O
rg

an

UMI.threshold
1
2
3
4

DropletMicrofluidic DropletFACS Microwell-seq

Extended Data Fig. 6 | The number of detected genes decreases 
similarly across organs as the read or UMI threshold is increased. 
Fraction of all detected genes (defined as >0 reads or UMIs) for each 
cell, across all organs, detected at increasing read or UMI thresholds for 

FACS (left; n = 44,949 individual cells), microfluidic-droplet (middle; 
n = 55,656 individual cells), and microwell-seq (right; n = 28,372 
individual cells) methods. Summary statistics are contained in 
Supplementary Table 6.
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Extended Data Fig. 7 | The number of differentially expressed genes 
for each cell type that are common between methods. Venn diagrams 
showing the overlap between differentially expressed genes for each 

common cell type across the three methods (FACS, microfluidic-
droplet and microwell-seq). Plotted data are provided in tabular form in 
Supplementary Table 2.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 8 | t-SNE visualization of all FACS cells by cluster ID. n = 44,949 individual cells. Clusters are discussed in the text and further 
analysed in Fig. 3.
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Extended Data Fig. 9 | Metrics of cluster heterogeneity. a, Bar plot 
showing the heterogeneity score for each cluster containing several cell 
types. b–g, Heat maps showing the average between-cell-type distances 

within select clusters, normalized so that the average distance between 
pairs of FACS cells is 1, clipped to a max of 1, for clusters 1 (b), 2 (c), 3 (d), 
24 (e), 48 (f) and 53 (g).
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Extended Data Fig. 10 | Contribution of transcription factors to cell 
identity. a, Tanglegram contrasting the dendrogram obtained using 
all expressed genes with one obtained using only the expression of 
transcription factors. The solid lines indicate segments that did not change 
position during the alignment between the two trees, and the dotted lines 
correspond to dendrogram branches reordered during the entanglement 

calculations. The colours indicate the branches for which identical leaves 
are aligned in both dendrograms. b–e, t-SNE visualization of epithelial (b), 
endothelial (c), B cells (d) and T cells (e), coloured by organ.  
f–i, t-SNE visualization of epithelial (f), endothelial (g) B cell (h) and  
T cell (i) expression of select transcription factors (from grey, low,  
to red, high). In b–i, n = 60 randomly selected cells for each cell type.
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Data analysis Sequences from the Novaseq were de-multiplexed using bcl2fastq version 2.19.0.316. Reads were aligned using to the mm10plus 
genome using STAR version 2.5.2b with parameters TK. Gene counts were produced using HTSEQ version 0.6.1p1 with default 
parameters, except “stranded” was set to “false”, and “mode” was set to “intersection-nonempty”. 
 
Sequences from the microfluidic droplet platform were de-multiplexed and aligned using CellRanger version 2.0.1, available from 10x 
Genomics with default parameters. 
 
Standard procedures for filtering, variable gene selection, dimensionality reduction, and clustering were performed using the Seurat 
package version 2.2.1. A detailed worked example, including the mathematical formulae for each operation, is in the Tissue Annotation 
Vignette. The parameters that were tuned on a per-tissue basis (resolution and number of PCs can be viewed in the tissue-specific Rmd 
files available on GitHub).  
 
Dendrograms were made with the OntologyX R package version 2.4, and tanglegrams with the dendextend R package version 1.8. The 
varselRF R package version 0.7-8 was used for random forest analysis. 
 
Custom code was used for the transcription factor analysis and is available through GitHub.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All data, protocols, and analysis scripts from the Tabula Muris are shared as a public resource (http://tabula-muris.ds.czbiohub.org/). Gene counts and metadata 
from all single cells are accessible on Figshare (https://figshare.com/projects/
Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733), and raw data are available on 
GEO (GSE109774).
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Sample size No statistical methods were used to pre-determine sample size. Our sample size is sub-sampled for each organ from a cohort of 4 male and 4 
female mice. The number of mice was restricted due to costs and practical constraints of collecting and processing organs. The sample size 
varies for each organ, as documented in the supplemental text. This was due to experimental constraints, for example: conflicting tissue 
dissociation protocols for liver and pancreas which limited our ability to process single cells from both of these organs from the same animal.

Data exclusions Exclusion criteria were pre-establish: Cells with fewer than 500 detected genes were excluded. (A gene counts as detected if it has at least one 
read mapping to it). Cells with fewer than 50,000 reads (FACS) or 1000 UMI (microfluidic droplet) were excluded.

Replication We have compared our results where possible, to those from Han et al., 2018. However, besides the biological replicates included in the 
study, we have not replicated any findings due to the financial constraints of single cell sequencing.

Randomization Mice were not randomized due to practical constraints. Either 2 males or 2 females were collected on any particular day, spanning 4 days. 2 
males: 6/15/2017 and 6/16/2017. 2 females: 7/7/2018 and 7/20/2017

Blinding We did not have experimental groups in this study.
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Materials & experimental systems
n/a Involved in the study
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Antibodies

Eukaryotic cell lines

Palaeontology
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Number;Antigen name;Fluorophore;Company;Cat No;Reactivity species;Origin species;Clonality;Clone;Application;Link 

1;ACSA2;PE;Miltenyi;130102365;mouse;rat;monoclonal;  IH3-18A3;IF, FC;https://www.miltenyibiotec.com/US-en/products/
macs-flow-cytometry/antibodies/primary-antibodies/anti-acsa-2-antibodies-mouse-ih3-18a3-1-10.html/ 
2;rabbit IgG;AF488;Invitrogen;A11034;rabbit;goat;polyclonal;NA;IF, FC, IHC;https://www.thermofisher.com/antibody/product/
Goat-anti-Rabbit-IgG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-11034 
3;Ter119;Pacific Blue;Biolegend;116232;mouse;rat;monoclonal;Ter-119;FC;https://www.biolegend.com/en-us/products/pacific-
blue-anti-mouse-ter-119-erythroid-cells-antibody-6137 
4;CD45R/B220;FITC;BioLegend;103206;mouse,human,cat;rat;monoclonal;  RA3-6B2;FC;https://www.biolegend.com/en-us/
products/fitc-anti-mouse-human-cd45r-b220-antibody-445 
5;CD106;PE/Cy7;BioLegend;105720;mouse;rat;monoclonal; 429 (MVCAM.A);FC;https://www.biolegend.com/en-us/products/pe-
cy7-anti-mouse-cd106-antibody-6135 
6;CD11B/MAC1;FITC;BioLegend;101206;mouse, human, chimpanzee, baboon, cynomolgus, rhesus, rabbit;rat;monoclonal;  
M1/70;FC;https://www.biolegend.com/en-us/products/fitc-anti-mouse-human-cd11b-antibody-347 
7;anti-mouse Lineage Cocktail;FITC;BioLegend;133301;mouse;Armenian Hamster, rat;mixture of monoclonals;145-2C11, 
RB6-8C5, M1/70, RA3-6B2, Ter-119;FC;https://www.biolegend.com/de-de/products/fitc-anti-mouse-lineage-cocktail-with-
isotype-ctrl-5803 
8;CD11b;BV421;BioLegend;101236;mouse, human, chimpanzee, baboon, cynomolgus, rhesus, rabbit;rat;monoclonal;  
M1/70;FC;https://www.biolegend.com/de-de/products/brilliant-violet-421-anti-mouse-human-cd11b-antibody-7163 
9;CD11b;PE/Cy7;BD Pharmingen;552850;mouse, human, chimpanzee, baboon, cynomolgus, rhesus, rabbit;rat;monoclonal;  
M1/70;FC;https://www.bdbiosciences.com/eu/applications/research/stem-cell-research/mesenchymal-stem-cell-markers-bone-
marrow/mouse/negative-markers/pe-cy7-rat-anti-cd11b-m170/p/552850 
10;CD140a/PDGFRa;APC;R&D Systems;AF1062;mouse;mouse;polyclonal;NA;WB, IHC;https://www.rndsystems.com/products/
mouse-pdgf-ralpha-antibody_af1062 
11;CD140b/PDGFRb;APC;eBioscience;17-1402-82;mouse;rat;monoclonal;APB5;FC;https://www.thermofisher.com/antibody/
product/CD140b-PDGFRB-Antibody-clone-APB5-Monoclonal/17-1402-80 
12;CD171/L1CAM;PE-Vio770;Miltenyi;130-102-135;mouse;rat;monoclonal;555;FC, IF;https://www.miltenyibiotec.com/US-en/
products/macs-flow-cytometry/antibodies/primary-antibodies/cd171-l1cam-antibodies-mouse-555-1-10.html/ 
13;CD24 ;PE/Cy7;Biolegend;101822;mouse;rat;monoclonal;  M1/69;FC;https://www.biolegend.com/en-us/products/pe-cy7-anti-
mouse-cd24-antibody-3862 
14;CD2;APC;Biolegend;100112;mouse;rat;monoclonal;RM2-5;FC;https://www.biolegend.com/en-ie/products/apc-anti-mouse-
cd2-antibody-9287 
15;CD2;PE/Cy7;BioLegend;100114;mouse;rat;monoclonal;RM2-5;FC;https://www.biolegend.com/de-de/products/pe-cy7-anti-
mouse-cd2-antibody-9288 
16;CD31;Pacific Blue;Biolegend;102422;mouse;rat;monoclonal;390;FC;https://www.biolegend.com/de-de/products/pacific-blue-
anti-mouse-cd31-antibody-6669 
17;CD31;APC;BD Biosciences;551262;mouse;rat;monoclonal;MEC 13.3;FC;http://www.bdbiosciences.com/eu/applications/
research/stem-cell-research/cancer-research/mouse/apc-rat-anti-mouse-cd31-mec-133/p/551262 
18;CD31;APC;BioLegend;102510;mouse;rat;monoclonal;MEC 13.3;FC;https://www.biolegend.com/de-de/products/apc-anti-
mouse-cd31-antibody-375 
19;CD31;BV421;BD;562939;mouse;rat;monoclonal;MEC 13.3;FC;http://www.bdbiosciences.com/us/applications/research/stem-
cell-research/cancer-research/mouse/bv421-rat-anti-mouse-cd31-mec-133/p/562939 
20;CD31;FITC;BD Biosciences;561813;mouse;rat;monoclonal;MEC 13.3;FC;https://www.bdbiosciences.com/us/applications/
research/stem-cell-research/cancer-research/mouse/fitc-rat-anti-mouse-cd31-mec-133/p/561813 
21;CD31;FITC;Biolegend;102506;mouse;rat;monoclonal;MEC 13.3;FC;https://www.biolegend.com/de-de/products/fitc-anti-
mouse-cd31-antibody-377 
22;CD31;PE/Dazzle594;Biolegend;102526;mouse;rat;monoclonal;MEC 13.3;FC;https://www.biolegend.com/de-at/products/pe-
dazzle-594-anti-mouse-cd31-antibody-14322 
23;CD326;APC/Fire750;Biolegend;118230;mouse;rat;monoclonal;G8.8;FC;https://www.biolegend.com/en-us/products/apc-
fire-750-anti-mouse-cd326-ep-cam-antibody-13635 
24;CD326;PE/Cy7;Biolegend;118216;mouse;rat;monoclonal;G8.8;FC;https://www.biolegend.com/en-us/products/pe-cy7-anti-
mouse-cd326-ep-cam-antibody-5303 
25;CD34;AF647;BD Pharmingen;560230;mouse;rat;monoclonal;RAM34;FC;http://www.bdbiosciences.com/us/applications/
research/stem-cell-research/cancer-research/mouse/alexa-fluor-647-rat-anti-mouse-cd34-ram34/p/560230 
26;CD3;APC;Biolegend;100236;mouse;rat;monoclonal;17A2;FC;https://www.biolegend.com/en-us/products/apc-anti-mouse-
cd3-antibody-8055 
27;CD3;FITC;BioLegend;100203;mouse;rat;monoclonal;17A2;FC;https://www.biolegend.com/de-de/products/fitc-anti-mouse-
cd3-antibody-45 
28;CD44;APC;Biolegend;103012;mouse, human;rat;monoclonal;IM7;FC;https://www.biolegend.com/de-de/products/apc-anti-
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mouse-human-cd44-antibody-312 
29;CD45;Pacific Blue;Biolegend;103126;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/pacific-
blue-anti-mouse-cd45-antibody-3102 
30;CD45;APC;Biolegend;103112;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/apc-anti-mouse-
cd45-antibody-97 
31;CD45;BV51;Biolegend;103138;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/brilliant-
violet-510-anti-mouse-cd45-antibody-7995 
32;CD45;FITC;BioLegend;103108;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/fitc-anti-
mouse-cd45-antibody-99 
33;CD45;PE;Biolegend;103106;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/pe-anti-mouse-
cd45-antibody-100 
34;CD45;PE/Cy7;eBioscience;25-0451-82;mouse;rat;monoclonal;30-F11;FC;https://www.thermofisher.com/antibody/product/
CD45-Antibody-clone-30-F11-Monoclonal/25-0451-81 
35;CD45R/B220;FITC;BioLegend;103206;mouse,human,cat;rat;monoclonal;  RA3-6B2;FC;https://www.biolegend.com/en-us/
products/fitc-anti-mouse-human-cd45r-b220-antibody-445 
36;CD49f ;APC;Biolegend;313616;Human, African Green, Mouse, Baboon, Capuchin Monkey, Cat (Feline), Cattle (Bovine, Cow), 
Chimpanzee, Cynomolgus, Dog (Canine), Horse (Equine), Rabbit (Lapine), Rhesus, Sheep (Ovine), Swine (Pig, 
Porcine);rat;monoclonal;GoH3;FC;https://www.biolegend.com/de-de/products/apc-anti-human-mouse-cd49f-antibody-5617 
37;CD66a;PE;Biolegend;134506;mouse;mouse;monoclonal;Mab-CC1;FC;https://www.biolegend.com/de-de/products/pe-anti-
mouse-cd66a-ceacam1a-antibody-5986 
38;CD90.2/Thy-1.2;APC/Cy7;Biolegend;105328;mouse;rat;monoclonal;30-H12;FC;https://www.biolegend.com/de-de/products/
apc-cy7-anti-mouse-cd90-2-antibody-6671 
39;CD90.2/Thy-1.1;AF488;BioLegend;202506;Rat, Mouse (AKR/J, PL, and FVBIN mouse strains), Cross-Reactivity: Rabbit (Lapine), 
Guinea Pig;mouse;monoclonal;  OX-7 ;FC;https://www.biolegend.com/de-de/products/alexa-fluor-488-anti-rat-cd90-mouse-
cd90-1-thy-1-1-antibody-3126 
40;CD90.2/Thy-1.2;FITC;BioLegend;140304;mouse;rat;monoclonal;  53-2.1;FC;https://www.biolegend.com/de-de/products/fitc-
anti-mouse-cd90-2-thy-1-2-antibody-6761 
41;C-FMS ;BV411;Biolegend;135513;mouse;rat;monoclonal;AFS98;FC;https://www.biolegend.com/de-de/products/brilliant-
violet-421-anti-mouse-cd115-csf-1r-antibody-8971 
42;CKIT ;APC;BioLegend;105812;mouse;rat;monoclonal;  2B8;FC;https://www.biolegend.com/de-de/products/apc-anti-mouse-
cd117-c-kit-antibody-72 
43;endomucin;FITC;eBioscience ;14-5851-82;mouse;rat;monoclonal;V.7C7;FC, IHC, IP, WB;https://www.thermofisher.com/
antibody/product/Endomucin-Antibody-clone-eBioV-7C7-V-7C7-Monoclonal/14-5851-81 
44;EpCAM;APC;ThermoFisher;17-5791-82;mouse;rat;monoclonal;G8.8;FC, IHC, IP, WB;https://www.thermofisher.com/antibody/
product/CD326-EpCAM-Antibody-clone-G8-8-Monoclonal/17-5791-80 
45;EpCAM;FITC;eBioscience;11-5791-82;mouse;rat;monoclonal;G8.8;FC, IHC, IP, WB;https://www.thermofisher.com/antibody/
product/CD326-EpCAM-Antibody-clone-G8-8-Monoclonal/11-5791-80 
46;TER119;Pacific Blue;Biolegend;116232;mouse;rat;monoclonal;TEr-119;FC;https://www.biolegend.com/de-de/products/
pacific-blue-anti-mouse-ter-119-erythroid-cells-antibody-6137 
47;IgM;PE/Cy7;BioLegend;406514;mouse;rat;monoclonal;  RMM-1;FC;https://www.biolegend.com/de-de/products/pe-cy7-anti-
mouse-igm-6935 
48;CD49f;FITC;BioLegend;313606;Human, African Green, Mouse, Baboon, Capuchin Monkey, Cat (Feline), Cattle (Bovine, Cow), 
Chimpanzee, Cynomolgus, Dog (Canine), Horse (Equine), Rabbit (Lapine), Rhesus, Sheep (Ovine), Swine (Pig, 
Porcine);rat;monoclonal;GoH3;FC;https://www.biolegend.com/de-de/products/fitc-anti-human-mouse-cd49f-antibody-2606 
49;LNGFR;Vio770;Miltenyi;103110079;mouse,monkey,goat,dog,pig,sheep;mouse;monoclonal;ME20.4-1.H4;FC, IF;https://
www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/antibodies/primary-antibodies/cd271-lngfr-antibodies-human-
me20-4-1-h4-1-11.html/ 
50;Ly-6A/E;Pacific Blue;BioLegend;108120;mouse;rat;monoclonal;D7;FC;https://www.biolegend.com/de-de/products/pacific-
blue-anti-mouse-ly-6a-e-sca-1-antibody-3140 
51;Ly-6G/Ly-6C/GR1;FITC;BioLegend;108405;mouse;rat;monoclonal;  RB6-8C5;FC;https://www.biolegend.com/de-de/products/
fitc-anti-mouse-ly-6g-ly-6c-gr-1-antibody-458 
52;Ly-6G/Ly-6C/GR1;PE/Cy7;BioLegend;108416;mouse;rat;monoclonal;  RB6-8C5;FC;https://www.biolegend.com/de-de/
products/pe-cy7-anti-mouse-ly-6g-ly-6c-gr-1-antibody-1931 
53;CD326;PE/Cy7;Biolegend;118216;mouse;rat;monoclonal;G8.8;FC;https://www.biolegend.com/de-de/products/pe-cy7-anti-
mouse-cd326-ep-cam-antibody-5303 
54;CD44;APC;Biolegend;103012;mouse, human;rat;monoclonal;IM7;FC;https://www.biolegend.com/de-de/products/apc-anti-
mouse-human-cd44-antibody-312 
55;CD45;Pacific Blue;Biolegend;103126;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/pacific-
blue-anti-mouse-cd45-antibody-3102 
56;CD66a;PE;Biolegend;134506;mouse;mouse;monoclonal;Mab-CC1;FC;https://www.biolegend.com/de-de/products/pe-anti-
mouse-cd66a-ceacam1a-antibody-5986 
57;O4;PE;Miltenyi;130-095-887;humam,mouse,rat;mouse;monoclonal;O4;FC, IF;https://www.miltenyibiotec.com/US-en/
products/macs-flow-cytometry/antibodies/primary-antibodies/anti-o4-antibodies-human-mouse-rat-o4-1-11.html 
58;SCA1;APC;Biolegend;122512;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/en-us/products/apc-anti-
mouse-ly-6a-e-sca-1-antibody-3897 
59;SCA1;FITC;Biolegend;122506;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/en-us/products/fitc-anti-
mouse-ly-6a-e-sca-1-antibody-3894 
60;SCA1;Pacific Blue;Biolegend;108120;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/pacific-blue-anti-
mouse-ly-6a-e-sca-1-antibody-3140.html 
61;SCA1;PE/Cy7;BioLegend;122514;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/pe-cy7-anti-mouse-ly-6a-
e-sca-1-antibody-3898.html 
62;SDC4;APC;Miltenyi;130-109-831;mouse;rat;monoclonal;REA640;FC, IF;https://www.miltenyibiotec.com/US-en/products/
macs-flow-cytometry/antibodies/primary-antibodies/anti-syndecan-4-antibodies-mouse-rea640-1-10.html/ 
63;TER119;FITC;BioLegend;116205;mouse;rat;monoclonal;TER-119;FC;https://www.biolegend.com/en-us/products/fitc-anti-
mouse-ter-119-erythroid-cells-antibody-1865 
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64;TER119;PE/Cy5;BioLegend;116210;mouse;rat;monoclonal;TER-119;FC;https://www.biolegend.com/en-us/products/pe-cy5-
anti-mouse-ter-119-erythroid-cells-antibody-1868 
65;Thbs1;APC;Fisher;MA5-13398;Bovine, Dog, Horse, Human, Mouse, Sheep, Pig, Rat;mouse;monoclonal;A6.1;FC, IHC, IF, IP, 
WB;https://www.thermofisher.com/antibody/product/Thrombospondin-1-Antibody-clone-A6-1-Monoclonal/MA5-13398 
66;Tmem119 ;AF488;Abcam;ab210405;mouse;rabbit;monoclonal;106-6;FC;http://www.abcam.com/tmem119-antibody-106-6-
microglial-marker-ab210405.html 
67;VCAM;PE/Cy7;Biolegend;105720;mouse;rat;monoclonal;MVCAM.A;FC;https://www.biolegend.com/en-us/products/pe-cy7-
anti-mouse-cd106-antibody-6135 

Validation Please refer to references contained in the links in the "Antibodies Used" section above.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus, C57BL/6JN, male and female, 10-15 weeks 

Wild animals Study did not involve wild animals.

Field-collected samples Study did not involve field samples.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Please see the supplemental text for extensive details regarding each organ.

Instrument Sony SH800S for all organs except limb muscle and diaphragm, which were sorted on a BD Aria III.

Software BD FACS Diva and the default SH800S software were used to collect data.

Cell population abundance Please see the supplemental text for extensive details regarding each organ.

Gating strategy Please see the index data for each organ.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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